THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Suggested solutions to homework 1

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

4.7. Solution. T is linear: $\forall \alpha, \beta \in \mathbb{R}, \forall x_1(t), x_2(t) \in C[0, 1], \forall t \in [0, 1],$

$$
T(\alpha x_1 + \beta x_2)(t) = \int_0^1 k(t, u)(\alpha x_1(u) + \beta x_2(u)) du
$$

= $\alpha \int_0^1 k(t, u)x_1(u) du + \beta \int_0^1 k(t, u)x_2(u) du$
= $\alpha T(x_1)(t) + \beta T(x_2)(t).$

Therefore, $T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2)$.

T maps $C[0, 1]$ to $C[0, 1]$: For any $x(t) \in C[0, 1]$, there exists $M > 0$ such that $|x(t)| \leq M$, $t \in [0, 1]$. $\forall t_0 \in [0,1], \forall \varepsilon > 0$, since $k(t, u)$ is continuous on $[0, 1]^2$, there exists $\delta > 0$ such that if $|t - t_0| < \delta$ and $t \in [0,1]$ then $|k(t, u) - k(t_0, u)| < \frac{\varepsilon}{\lambda}$ $\frac{0}{M}$. Then whenever $|t - t_0| < \delta$ and $t \in [0, 1]$ we have

$$
|Tx(t) - Tx(t_0)| = \left| \int_0^1 k(t, u)x(u) du - \int_0^1 k(t_0, u)x(u) du \right|
$$

\n
$$
\leq \int_0^1 |k(t, u) - k(t_0, u)| \cdot |x(u)| du
$$

\n
$$
< \int_0^1 \frac{\varepsilon}{M} \cdot M du = \varepsilon.
$$

Therefore, Tx is a continuous function on [0, 1].

4.9. Solution. $\forall x \in l^p$,

$$
||T_l x||_p = \left(\sum_{k=2}^{\infty} |x_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} = ||x||_p.
$$

So we have that T_l is bounded and $||T_l|| \leq 1$. Take $x = e_2 = (0, 1, 0, 0, \dots)$ and we can get

$$
||T_lx||_p = ||(1,0,0,\cdots)||_p = 1 \le ||T_l|| ||x||_p = ||T_l||.
$$

Therefore, $||T_l|| = 1$.

Similarly,

$$
||T_r x||_p = \left(0^p + \sum_{k=1}^{\infty} |x_k|^p \right)^{\frac{1}{p}} = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{\frac{1}{p}} = ||x||_p.
$$

It follows that T_r is bounded with $||T_r|| = 1$.

4.10. Solution. Let $y \in \widetilde{X}$, there exists a sequence $\{x_n\} \subset X$ such that $x_n \to y$. Then we have $|| f(x_m) - f(x_n)|| = || f(x_m - x_n) || \le ||f|| ||x_m - x_n||$. Since convergent sequences are Cauchy, $||x_m - x_n|| \to 0$ as $m, n \to \infty$. This implies that $\{f(x_n)\}\$ is Cauchy and $\lim_{n \to \infty} f(x_n)$ exists.

Define $f(y) = \lim_{n \to \infty} f(x_n)$. We claim that f is well defined. Suppose $\{y_n\}$ is an arbitrary sequence such that $y_n \to y$. Then $|| f(y_n) - f(x_n) || \le ||f|| ||y_n - x_n|| \to 0$ as $n \to \infty$. This implies

$$
\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} f(x_n) = \widetilde{f}(y).
$$

 \widetilde{f} is linear: $\forall x, y \in \widetilde{X}, \forall \alpha, \beta \in \mathbb{R}$, there exist sequences $\{x_n\}, \{y_n\} \subset X$ such that $x_n \to x$, $y_n \to y$ as $n \to \infty$. Clearly $\alpha x_n + \beta y_n \to \alpha x + \beta y$. Therefore,

$$
\widetilde{f}(\alpha x + \beta y) = \lim_{n \to \infty} f(\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} f(x_n) + \beta \lim_{n \to \infty} f(y_n) = \alpha \widetilde{f}(x) + \beta \widetilde{f}(y).
$$

 $\widetilde{f}|_X = f: \forall x \in X$, choose $\{x_n\} = (x, x, \dots)$ and then $x_n \to x$. So that

$$
f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(x) = f(x).
$$

 \widetilde{f} is bounded: for any $y \in \widetilde{X}$, we have

$$
\left|\widetilde{f}(y)\right| \le \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} ||f|| ||x_n|| = ||f|| \lim_{n \to \infty} ||x_n|| = ||f|| ||y||.
$$

 \tilde{f} is unique: Suppose there is another extension f_1 . Then

$$
\widetilde{f}(y) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f_1(x_n) = f_1(y).
$$

Finally, let $n \to \infty$ in $||f(x_n)|| \le ||f|| ||x_n||$ and we get $||\widetilde{f}(y)|| \le ||f|| ||y||$. Hence $||\widetilde{f}|| \le ||f||$. It's clear that $\|\tilde{f}\| \geq \|f\|$ because the norm, defined as a supremum, must be non-decreasing in an extension. Together we have $\|\widetilde{f}\| = \|f\|.$